Improving the Quality of Mathematics Teaching and Learning on a Large Scale: Challenges and Opportunities

Paul Cobb
Vanderbilt University
What Does It Take to Improve the Quality of Mathematics Teaching on a Large Scale?

• Overview of the MIST project
 • Goal: Identify potentially productive instructional improvement strategies

• Share some of the findings concerning potentially productive strategies
Background: US Educational System

- Decentralized education system
 - Local control of schooling

- Each US state divided into a number of independent school *districts*
 - Rural districts with less than 1,000 students
 - Urban districts with 100,000 students or more

- State standards and assessments
 - No Child Left Behind (NCLB)
 - Common Core State Standards for Mathematics (CCSSM)
 - Reorganization rather than mere extension or elaboration of current practices
MIST Project

• 2007-2011: 4 large urban districts – 360,000 students
 • Analyses to inform revision of district instructional improvement strategies

• 2011-2015: 2 large urban districts – 180,000 students
 • Co-designed and co-led PD for principals and coaches

• Research practice partnership
 • Do research with rather than on schools and districts
Partner Districts

• Limited financial resources
• High proportion of students from traditionally underserved groups
 • Achievement/opportunity gaps
• High teacher turn over
• High proportion of novice teachers
Partner Districts

• Recruited districts that were:
 • Aiming at rigorous learning goals for *all* students’ mathematical learning
 • Attempting to improve the *quality* of instruction
 • Implementing reasonably coherent sets of improvement strategies
 • Forge a common improvement agenda with district leaders
Partner Districts

• Adopted instructional materials consistent with rigorous learning goals

• Lesson Structure:
 • Introduce or launch rigorous mathematical task(s)
 • Small group or individual work
 • Whole class discussion
 • Teacher presses students to:
 • Explain and justify their reasoning
 • Make connections between different solutions
Project Goals

• Pragmatic goal
 • Add value to the districts’ instructional improvement efforts

• Research goal:
 • Develop an empirically grounded theory of action for instructional improvement in mathematics at scale
 • A set of policies or strategies for supporting teachers’ (and others’) learning
 • A rationale that explains why it is reasonable to expect that these strategies will be effective

(Argyris & Schön, 1974, 1978)
Initial Conjectures

• Mathematics education, teacher education, educational policy and leadership
 • Instructional materials and associated resources
 • Teacher professional development
 • Teacher collaborative groups
 • School instructional leadership
 • District leadership

• Test, revise, and elaborate initial conjectures
 • *Theory of action* for large scale instructional improvement in mathematics
Participants

- 6-10 schools - 30 middle-grades mathematics teachers in each district

- Mathematics coaches

- School leaders
 - Principals, assistant principals

- District leaders
 - Across central office units that have a stake in mathematics teaching and learning
Annual Cycles of Data Collection, Analysis, and Feedback

- October
- Jan. - March
- May
- Feb. - May
October:
- Interviewed district leaders to document their current strategies for improving middle-school mathematics

Annual Cycles of Data Collection, Analysis, and Feedback

- Jan. - March
- Feb. - May
- May
Annual Cycles of Data Collection, Analysis, and Feedback

- October
- May
- Feb. - May

January-March:
- Collected data to document how the districts’ strategies were actually playing out in schools and classrooms
Jan – March: Collected data to document how the districts’ strategies were actually playing out in schools and classrooms

Feb. - May

• Audio-recorded interviews with the 200 participants
 – The school and district settings in which the teachers and instructional leaders work
 • Sources of support
 • To whom and for what they are held accountable
Jan – March: Collected data to document how the districts’ strategies were actually playing out in schools and classrooms

- On-line surveys for teachers, coaches, and school leaders
- Video-recordings of two consecutive lessons in the 120 participating teachers’ classrooms
 - Coded using the *Instructional Quality Assessment* (IQA)
- Assessments of teachers’ and coaches’ *Mathematical Knowledge for Teaching* (MKT)
- Video-recordings of district professional development
- Audio/video-recordings of teacher collaborative time
- On-line assessment of teacher networks completed by all 300 mathematics teachers in the participating schools
- Access to district student achievement data
Annual Cycles of Data Collection, Analysis, and Feedback

Feb. – May:
- Analyzed transcripts of the 200 interviews
- Identified and explained differences between each district’s intended and implemented improvement strategies
- Developed a detailed report for leaders in each district
- Shared findings and made actionable recommendations
Annual Cycles of Data Collection, Analysis, and Feedback

May:
- Met with district leaders to discuss our findings and recommendations
Research Team

PI and co-Pls:
Paul Cobb, Erin Henrick, Ilana Horn (Vanderbilt University)
Tom Smith (University of California, Riverside)
Kara Jackson (University of Washington)
Ken Frank (Michigan State University)

Post-Doctoral Fellows and Doctoral Students:
Christy Larson Andrews, Mollie Applegate, Dan Berebitsky, Jason Brasel, I-Chien Chen, Glen Colby, Brette Garner, Lyndsey Gibbons, Seth Hunter, Britnie Kane, Karin Katterfeld, Emily Kern, Nick Kochmanski, Adrian Larbi-Cherif, Chuck Munter, Mahtab Nazemi, Hannah Nieman, Jessica Rigby, Brooks Rosenquist, Rebecca Schmidt, Charlotte Dunlap Sharpe, Megan Webster, Annie Garrison Wilhelm, Jonee Wilson

Other Collaborators:
Melissa Boston (Duquesne University)
Min Sun (University of Washington)
Coherent Instructional System

Teacher Learning Subsystem:
- Pull-out PD
- Teacher Collaboration
- Mathematics Coaching
- Teacher Networks

Instructional Materials + Assessments

Supplemental Supports for Currently Struggling Students

Goals + Vision
Teachers’ Knowledge, Perspectives and Instructional Practices

• *Instructional Quality Assessment (IQA)*
 • Video-recordings of lessons
 • Assess the potential of the task(s)
 • Assess the quality of task implementation

• *IQA coding scheme:*

<table>
<thead>
<tr>
<th>Score</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Doing genuine mathematics: Exploring, justifying, explaining, generalizing, etc.</td>
</tr>
<tr>
<td>3</td>
<td>Using procedures with connections to underlying mathematical concepts</td>
</tr>
<tr>
<td>2</td>
<td>Using specified procedures</td>
</tr>
<tr>
<td>1</td>
<td>Memorizing or reproducing facts, rules, formulae, or definitions</td>
</tr>
</tbody>
</table>
Measures of Teacher Knowledge

• *Mathematical Knowledge for Teaching (MKT)*
 • Multiple choice instrument
 • Mathematical knowledge that is specific to the practice of teaching

• *Vision of High-Quality Mathematics Instruction (VHQMI)*
 • Interviews
 • Nature of the tasks
 • Nature of whole class discussions
 • Role of the teacher
Teachers’ Visions of High Quality Mathematics Instruction (VHQMI)

• Instruction (IQA) of teachers who had higher VHQMI scores was more likely to improve
 • A leading indicator of instructional improvement

• Teachers’ VHQMI related to
 • Selecting cognitive demanding tasks
 • Maintaining level of challenge throughout lessons
Teachers’ Views of Students’ Current Mathematical Capabilities (VSMC)

- View of Student’s Mathematical Capabilities (VSMC)
- Interviews
 - **Diagnostic dimension**: Explanations of the source of student success or failure
 - **Prognostic dimension**: Descriptions of the supports provided to students perceived as struggling
Teachers’ Views of Students’ Current Mathematical Capabilities (VSMC)

• Teachers’ attributions of students’ difficulties:
 • Less that 20% attributed to limited instructional or schooling opportunities
 • Almost 30% attributed *solely* to deficits of students, their families, or their communities
• Less than 20% described making productive adjustments to their instruction
Teachers’ Views of Students’ Current Mathematical Capabilities (VSMC)

• Teachers with productive VSMC more likely to:
 • Maintain the cognitive demand of tasks (IQA)
 • Conduct higher quality WC discussions in which students have opportunities to explain their reasoning (IQA)
 • Influenced by the racial, ethnic, and linguistic composition of the classes they taught
 • Controlled for Mathematical Knowledge for Teaching (MKT) and instructional vision (VHQMI)
Teachers’ Views of Students’ Current Mathematical Capabilities (VSMC)

• Teachers’ instruction unlikely to improve unless they have developed both relatively sophisticated VHQM1 and productive VSMC
Implications

• MKT clearly matters, but supporting improvements in teachers’ MKT is not sufficient

• It is also important to support teachers’ development of sophisticated VHQMI and productive VSMC
 • Reason and motivation to work to improve the quality of their instruction
 • Level of challenge of tasks teachers select
 • Extent to which they maintain that level of challenge
 • Extent to which they elicit and build on their students’ thinking
Content-Focused Coaching

Teacher Learning Subsystem:
- Pull-out PD
- Teacher Collaboration
- Mathematics Coaching
- Teacher Networks

Curriculum + Assessments

Goals + Vision

Supplemental Supports for Currently Struggling Students
Pull-Out Teacher Professional Development

• High quality PD:
 • Organized around the instructional materials teachers are using
 • Sustained over time -- sessions build on each other
 • Focuses on a small set of high-leverage aspects of instruction
 • Foregrounds students’ thinking in relation to instruction
 • Involves both investigating and enacting specific instructional practices
Pull-Out Teacher Professional Development

• Goal: Support teachers to adjust their current instructional practices
 • *Which* topics are taught and *when* they are taught
• One or two pull-out PD sessions can be effective

• Goal: Support teachers to reorganize their current practices
 • Not just *which* topics are taught and *when* they are taught, but *how* they are taught
• Pull-out PD is often not sufficient even if it is of high quality
System of Supports for Teachers’ Learning

• Supports for teachers’ learning:
 • Pull-out PD
 • Teacher collaborative time
 • Coaching

• Deliberately coordinate different types of support so that they constitute a system
Instructional Coaching

• Rationale: Coaches who have developed ambitious instructional practices can be more accomplished colleagues
 • Co-participate with teachers in activities close to instructional practice
 • One-on-one in teachers’ classroom
 • Teacher collaborative meetings
Identify Potentially Productive One-on-One Coaching Activities

• Criteria
 • Sustained over time
 • Focuses on high-leverage aspects of instruction
 • Foregrounds students’ thinking
 • Involves both investigating and enacting ambitious forms of practice

• Empirical evidence can support teachers’ development of ambitious instructional practices
Working One-on-One with Teachers in Their Classrooms

• Modeling instruction
 • Support teachers in developing a vision of specific instructional practices
 • Support teachers in developing productive views of their students’ current mathematical capabilities

• Co-teaching
 • Support teachers’ initial implementation of specific instructional practices

• Observing instruction and providing feedback
 • Support teachers in improving their implementation of specific instructional practices
Working One-on-One with Teachers in Their Classrooms

• Coaching Cycle

- Pre-conference (co-plan)
- Classroom collaboration
- Debrief
Working with Groups of Teachers

• Engaging teachers in mathematics
 • Identify the big mathematical ideas
 • Anticipate student solution strategies

• Analyzing student work
 • Assess students’ thinking and link to instruction

• Analyzing classroom video
 • Assess instruction and link to student thinking

• Engaging in lesson study
 • Analogous to one-on-one coaching cycle
Coaching Expertise

• Content-specific pedagogical expertise
 • Ambitious and equitable instructional practices
 • Relatively sophisticated mathematical knowledge for teaching
 • Productive views of students’ current mathematical capabilities
Coaching Expertise

• Relationship-building skills
 • Essential that teachers *trust* coaches to help them improve their instruction
 • Can be intimidating for teachers to make their work public
 • Have to feel comfortable sharing their current problems of practices
 • Negotiate improvement goals with teachers
 • Improvement goals have to become personal goals for teachers
 • Listen to and take teachers concerns seriously
Facilitation Skills

- Press and support teachers to explain their pedagogical reasoning while also maintaining trust
 - Provide detailed descriptions and analyses of students’ thinking
 - Relate that thinking to instruction
 - Consider how instruction might be improved to support students’ learning more effectively
Teacher Collaborative Meetings

• Productive teacher collaborative groups connect:
 • Mathematical learning goals
 • Students’ thinking
 • Instruction

• Requires expert facilitation
 • Negotiate feasible goals for teachers’ learning
 • Select activities and materials in light of those goals

• Coaches facilitate teacher collaborative meetings when the participating teachers do not have the expertise to do so
Teacher Advice Networks

• Interactions with colleagues with more sophisticated instructional practices supports the development of teachers’ own instructional practices
 • The quality but not the amount of teacher collaborative time influences whether teachers seek advice from each other outside of meetings
 • Those advice-seeking relationships tend to last
Teacher Learning Subsystem

• Coaches can play a key role in coordinating the various elements
 • Can play a leadership role in pull-out PD sessions that focus on particular aspects of instruction
 • Can lead or participate in teacher collaborative meetings that focus on the same aspects of instruction
 • Can support the teachers in enacting those aspects of instruction in their classroom
Resources

- Project papers, redacted feedback reports, interview protocols, surveys are all downloadable at:

 http://vanderbi.lt/mist
Collaboration with School Leaders

• Coaches’ effectiveness in supporting teachers’ learning depends on the extent to which they collaborate with school leaders
 • Development of trusting relationships with teachers
 • Amount of time they actually work with teachers on instructional issues

• Principals who developed and implemented instructional improvement plans capable of supporting significant teacher learning
 • Collaborated with an accomplished coachess